Hasta ahora, ninguna técnica había logrado definir con precisión la forma de un electrón. Una investigación internacional revela que son esféricos, lo que podría tener implicaciones en las modernas teorías de la física de partículas.
Los electrones no son objetos clásicos, sino pertenecientes al mundo cuántico subatómico. Aun así, se puede hablar de una forma para estas partículas elementales: “La física moderna –un campo llamado teoría cuántica de campos– concibe el electrón como una bolita de carga enmarañada”, explica Hudson a SINC.
Pequeñas 'pelotas' de carga eléctrica
“Cuando hablamos de la forma del electrón nos referimos a la distribución de la carga eléctrica en esa ‘bola’. Es una idea que se parece mucho a la que tenemos en nuestra vida normal sobre la forma de los objetos macroscópicos”, aclara el físico a SINC.
Hasta el momento, los científicos pensaban que la partícula tenía forma esférica, pero muchos postulaban que podía sufrir una distorsión debido a la posible existencia de un momento dipolar eléctrico (EDM), una magnitud que mide la polaridad global. Detectar experimentalmente el momento dipolar del electrón resultaba muy complicado ya que su valor sería demasiado pequeño.
Ahora, gracias a técnicas de enfriamiento de moléculas, Hudson y su equipo han conseguido medir el momento dipolar eléctrico del electrón y sus resultados son coherentes con la hipótesis de que es nulo. Por lo tanto, no afecta a la esfericidad de la partícula: “En el límite de precisión al que podemos llegar, no encontramos ninguna desviación en la forma esférica del electrón”, afirma Hudson.
Este hallazgo puede tener consecuencias en ciertas teorías de la física de partículas elementales. “La principal implicación de nuestro trabajo es que cuestiona algunas de las hipótesis que van más allá del modelo estándar de la física de partículas (la actualmente aceptada)”, indica el autor.
Moléculas ‘frías’
Los investigadores trabajaron sobre la idea de que si el electrón no fuera esférico, al colocarlo en un campo eléctrico experimentaría un movimiento vibratorio característico.
Para buscar signos de este movimiento, no usaron electrones ‘solos’, sino moléculas con electrones desapareados asociados. “Es más fácil manipular moléculas que electrones ‘desnudos”, asegura Hudson. El paso siguiente fue reducir la velocidad de las moléculas: “Debíamos detener el movimiento de las moléculas tanto como pudiéramos para poder estudiarlas el máximo tiempo posible y conseguir mayor precisión en la medida. Por eso necesitábamos enfriarlas”, explica.
--------------------------------------
Referencia bibliográfica:
J. J. Hudson, D. M. Kara, I. J. Smallman, B. E. Sauer, M. R. Tarbutt1, E. A. Hinds. “Improved measurement of the shape of the electron”. Nature 473, 25 de mayo de 2011. DOI:10.1038/nature10104
No hay comentarios:
Publicar un comentario